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To find out more about

angular momentum, 

follow the links at

www.learningincontext.com.

Objectives
• Define angular momentum.

• Explain the relationship between torque and rate of change of angular

momentum.

• Define angular impulse.

• Explain the relationship between angular impulse and change in angular

momentum.

• Explain the law of conservation of angular momentum.

• Solve problems using angular momentum, angular impulse, and

conservation of angular momentum.

When we say an object is in translation, we imply that it moves in a straight

line. When we say an object is in rotation, we imply that it spins or rotates

around an axis. In Section 5.1 you learned the analogy between the equations

for the kinetic energy of bodies in translation and rotation.

KEtranslation =  mv2

KErotation =  Iω2

In rotation, the moment of inertia I is analogous to mass, and angular

velocity ω is analogous to velocity. The analogy is true also for momentum.
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Linear momentum tells you how difficult it is to stop an object moving in a

straight line. Angular momentum tells you how difficult it is to stop a

rotating object. The linear momentum of an object is the product of its mass

and velocity. Angular momentum is the product of an object’s moment of

inertia and its angular velocity. We use the symbol L to represent angular

momentum.

p = mv

L = Iω

Remember that objects of equal mass but different shapes can have different

moments of inertia. Formulas for calculating I were given in Section 5.1 for

several common shapes. These formulas are repeated in Figure 7.7.

The SI and English units for moment of inertia, angular velocity, and

angular momentum are listed in Table 7.2

Table 7.2 
Units Needed to Calculate Angular Momentum

Angular momentum and angular velocity are vector quantities. But in this

book we will work with only the magnitudes of these quantities.

L = Iωω

SI Units English Units

I = kg • m2 I = slug • ft2

ω = rad/s ω = rad/s

L = kg • m2/s L = slug • ft2/s

Figure 7.7
Moment of inertia formulas for different-shaped objects.

In each formula, m is the mass of the object.
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Solution: Find the mass of the basketball in slugs. (1 lb = 16 oz)

A basketball is a hollow sphere. From Figure 7.7, the formula

for the moment of inertia of a hollow sphere is:

The angular speed must be in radians per second.

Now calculate the linear and angular momenta.

A net force is required to start (or stop) an object moving in translation.

A net torque is required to start (or stop) an object moving around an axis of

rotation. Torque in rotational motion is analogous to force in translational 

Newton’s Second Law for Rotation
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A basketball free-throw shooter

gives the ball an initial velocity

of 12 feet per second toward a

point above the basket. (This is

the velocity of the ball’s center of

mass.) The shooter also spins the

ball at a rate of 4.5 revolutions

per second. What are the

magnitudes of the initial linear

momentum and angular

momentum of the basketball? A

basketball weighs 21 ounces and

has a radius of 0.40 foot.
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motion. Newton’s second law relating force and linear momentum can be

rewritten for torque and angular momentum.

The astronaut’s boots will be firmly fixed to the space shuttle’s robot arm.

The shuttle will maintain a fixed attitude (will not rotate) in orbit by using

its thrusters during the recovery. If the astronaut can grab a point on the

outside surface of the satellite and hold on for 0.5 second, what force will

be required to stop the spin?

Solution: Use the equation to calculate the torque required to

stop the rotation. The torque is caused by a force F applied at a

distance r from the center of rotation. When τ is known, you

can calculate F from the equation τ = Fr.

From Figure 7.7 for a solid cylinder, I = mr2.

I =  (900 kg)(0.7 m)2 = 220.5 kg • m2

The initial angular velocity ωi must be converted to radians per

second.

If the satellite stops, its final angular velocity ωf is zero. The

moment of inertia does not change.  (If = Ii = I)
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In an on-orbit repair mission,

an astronaut volunteers to

attempt to grab a satellite to

stop its spin. The satellite’s

mass is 900 kg, and it is

spinning at a rate of 10 rpm.

The shape of the satellite can

be modeled as a solid cylinder

of radius 0.7 m.
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Rotation
A net torque exerted on an
object equals the rate of
change of the object’s angular
momentum.

Translation
A net force exerted on an
object equals the rate of
change of the object’s linear
momentum.
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The negative sign means the torque and force must be applied

in the direction opposite the satellite’s motion.

The force required to stop the satellite in 0.5 s is 661 N.

To change the angular speed of a rotating object, such as the satellite in

Example 7.6, a torque must be applied over a time interval. Angular impulse
in rotational motion is analogous to linear impulse in translational motion.

Angular impulse is the product of the torque τ and the time interval Δt over

which the torque acts.

Linear impulse = FΔt Angular impulse = τΔt

A potter’s wheel is a massive disk that rotates about an axis through its

center. The potter uses angular impulse when she sets the wheel in motion,

or accelerates a wheel that is already rotating. By pushing on the outside

edge of the wheel, she applies a torque that equals the force times the lever

arm. As shown in Figure 7.8, the lever arm is the distance from the applied

force to the center of rotation.

Figure 7.8
An angular impulse increases the

momentum of a potter’s wheel.
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The greater the torque and the longer it is applied, the greater the angular

impulse. The angular impulse determines the change in angular speed and

momentum. This relationship is analogous to the relationship between linear

impulse and momentum.

A 100-pound potter’s wheel is 2 feet in radius. A cylinder of clay 6 inches

in radius is fixed at the axis of rotation of the wheel. The rotational inertia

of the wheel keeps the clay turning at a nearly constant rate while the

potter forms the clay into a shape.

What torque is applied to the clay and wheel?
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Solution: The torque is the applied

force times the lever arm.

In this case the lever arm is

the radius of the clay

cylinder. The force is

frictional, so it opposes the

rotation. (It slows the

angular speed.) Therefore, it

is a negative quantity and

so is the torque.

The wheel spins at an initial

rate of 3.5 rev/s. The potter

applies a frictional force of

2 lb on the outside surface of

the clay cylinder. The force is

applied over a time interval of

10 s. The clay weighs 3.8 lb

and does not slip on the wheel

as it is formed.
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What is the angular speed of the potter’s wheel in Example 7.7, after the

torque is applied for 10 s? The radius of the clay does not change

significantly over this time interval. Write the answer in rev/s.

Solution: Use the angular impulse-momentum equation. The combined

moment of inertia I of the wheel and clay doesn’t change. 

(If = I i = I )

τΔt =  ΔL =  Iωf – Iωi = I(ωf – ωi)

The moment of inertia of the combined shapes is the sum of

the individual shapes. Both the wheel and clay are solid

cylinders. From Figure 7.6, the moment of inertia of a solid

cylinder is mr2.

Angular speed must be in units of rad/s.

Substitute the values into the angular impulse-momentum

equation.

Convert to rev/s.

The potter’s wheel slows to 3.25 revolutions per second.

f

rad 1 rev
3.25 rev/s20.4= =

s 2  rad

⎛ ⎞⎛ ⎞ω ⎜ ⎟⎜ ⎟π⎝ ⎠⎝ ⎠

τ ω ω

ω

Δ −

− −• •

t I=

 lb ft  s =  slug ft  ra

 f i

f

( )

( . )( ) ( . ) ( .1 0 10 6 23 22 02 dd/s

rad

s
 
rad

s
=   slug = lb s /ftf

f

 

)

( . )( )

.
.− + ⎡⎣ ⎤⎦•

1 0 10

6 23
22 0 2ω

ω ==  rad/s20 4.

i

rev rad
22.0 rad/s3.5 2= =

s rev

⎛ ⎞ ⎛ ⎞ω π⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

I I I

I m r m r

I

= +

= +

=
 lb

32.

wheel clay

wheel wheel clay clay
1
2

2
1
2

2

1
2

100

22 ft/s
 ft) +

 lb

32.2 ft/s
 ft)

=

2

2

2

2⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟(

.
( .2

3 8
0 5

6

1
2

I ..23 slug ft lb = slug ft/s
2 2• •⎡⎣ ⎤⎦

1
2

EExxaammppllee  77..88  AAnngguullaarr  SSppeeeedd  ooff  aa  PPootttteerr’’ss  WWhheeeell



346 CHAPTER 7    MOMENTUM

In the last section, we derived the law of conservation of linear momentum

by applying Newton’s laws of motion to a closed system. The impulse

applied to a closed system equals the change in the system’s linear

momentum. If no net force is applied to a system, the impulse is zero and

there is no change in the system’s linear momentum.

The same logic applies to a rotational system. Torque is analogous to force,

and angular momentum is analogous to linear momentum. 

The result for rotational motion is called the law of conservation of angular

momentum.

When no net external torque acts on a closed system, the total angular
momentum of the system does not change.

Skaters, gymnasts, dancers, and divers use conservation of angular

momentum. For example, a diver changes from a pike position to an

extended position at the end of a flip. This extension of mass away from the

center of rotation increases the diver’s moment of inertia I. There is no net

external torque on the diver, angular momentum is conserved, and the

product Iω is constant. When I is increased, ω is decreased. As the diver

enters the water, her angular velocity is so small that it appears to be zero.

Figure 7.9
A diver’s angular momentum 

is conserved. If Iω is constant,
as I increases, ω decreases.
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The diver in Figure 7.9 extends mass away from her center of rotation, and

increases her moment of inertia. The skater in Example 7.9 below moves

mass inward, toward his center of rotation. This decreases his moment of

inertia. Will the skater’s angular velocity increase or decrease?

A skater begins a spin with his arms outstretched. In this position, his

moment of inertia is 4.6 kg • m2 and he spins at a rate of 1.5 revolutions

per second. The skater brings his arms close to his body to increase his

spin rate. In this position, his moment of inertia is 1.4 kg • m2. What is the

skater’s final angular speed?

Solution: The force and torque caused by friction between the skates and

ice are very small. If this torque can be ignored, angular

momentum is conserved.

In this calculation, you do not need to convert angular

speed to rad/s since the conversion factors would cancel.

The skater’s final speed is 4.9 revolutions per second.
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How much work does the skater in Example 7.9 do when he pulls his

arms in to his body?

Solution: From the work-energy theorem, the work done by the skater

equals the change in kinetic energy.

The kinetic energy of an object in rotation is Iω2.

The skater does 460 joules of work.

Use dimensional analysis to show that the units in Example 7.10 are correct.

• Angular momentum is the product of an object’s moment of inertia and

its angular velocity.  L = Iω

• If a net torque is applied to an object, the torque equals the object’s rate

of change of angular momentum.  τ = 

• If a torque is applied to an object, the angular impulse is the torque

times the time interval over which the torque is applied.

• When an angular impulse is applied to an object, the angular impulse

equals the change in angular momentum.  τΔt = ΔL

• The angular momentum of a closed system is constant if no net external

torque acts on the system.
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1. A spinning object has angular momentum equal to the product of the

object’s ____________ and ____________.

2. When a torque acts on a rotating object over an interval of time, the

product of the torque and the time interval is called ____________.

3. Write an equation for Newton’s second law for an object in translation,

using force and momentum. Write an analogous equation for an object in

rotation. What two pairs of variables in the equations are analogous?

4. Match the units on the left to the descriptions on the right.

____  (lb • ft) • s a. Angular momentum in SI units

____  (N • m) • s b. Angular momentum in English units

____  kg• m/s2 c. Same as a slug

____  slug • ft2/s d. Angular impulse in SI units

____  lb • s2/ft e. Same as a newton

____  kg • m2/s f. Angular impulse in English units

5. Newton’s second law for rotation can be written in the form τ = ΔL/Δt.
Prove that the English units for the left side equal those for the right side.

6. The angular impulse-momentum equation can be written τΔt = ΔL. Prove

that the SI units for the left side equal those for the right side.

7. A pitcher throws a curve ball at an initial velocity of 75 mph (33.5 m/s)

toward the plate. The pitcher also spins the ball at a rate of 30 revolutions

per second. What are the magnitudes of the baseball’s initial linear

momentum and angular momentum? A baseball has a mass of 0.14 kg and

a radius of 3.6 cm.

8. The mass of the Earth is 5.98 × 1024 kg and its radius is 6.37 × 106 m.

What is the angular momentum of the Earth’s spin about its polar axis?

9. A 300-kg flywheel is used to store energy in a punch press. The flywheel

is in the shape of a solid cylinder of radius 0.8 m. When the operator

engages the press, the flywheel slows from 250 rpm to 150 rpm in

6 seconds. What torque is applied to the flywheel?

10. A turbine rotates at an initial angular speed of 200 rad/s. A torque of

400 N • m causes the angular speed to double in 30 s. What is the moment

of inertia of the turbine?

Exercises



11. The moment of inertia of a complicated shape is difficult to calculate

directly. Describe how you could measure the moment of inertia

experimentally.

12. The 229,000-lb space shuttle orbiter is in a circular orbit 147 miles above

the surface of the Earth. It completes an orbit every 89 minutes.

(a) What is the angular speed of the orbiter in rpm? In rad/s?

(b) What is the linear speed of the orbiter in mi/h? In ft/s? (The Earth’s

radius is 3960 miles.)

(c) What is the moment of inertia of the orbiter?

(d) What is the orbiter’s angular momentum?

13. An ice skater begins a spin with her arms outstretched and then pulls them

inward. Tell whether each of the following increases, decreases, or stays

the same.

(a) moment of inertia

(b) spin rate

(c) angular momentum

(d) kinetic energy

14. Neutron stars are believed to be formed from the cores of larger stars that

collapse under their own forces of gravity. The collapse can cause a

supernova explosion. Prior to a collapse, suppose a large star has a core of

radius 150,000 km. The core is a solid sphere that rotates once every 16

hours.

(a) What is the angular speed of rotation in rad/s?

(b) During the collapse, the outer layers of the star are blown off and the

core shrinks to a radius of 15 km. There are no external forces to

produce torques on the core, and the mass stays approximately the

same. What is the new angular speed in rad/s? In rpm?
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