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To find out more about

energy in mechanical and fluid

systems, follow the links at

www.learningincontext.com.

Objectives
• Explain the relationship between gravitational potential energy and an

object’s position in a gravitational field.

• Explain the relationship between elastic potential energy and an object’s

position.

• Describe the relationship between work done on a system and its

potential energy.

• Explain the law of conservation of energy.

• Solve problems using the law of conservation of energy.

• Explain Bernoulli’s principle.

• Use Bernoulli’s equation to solve problems in fluid flow.

In the last section, you learned that objects and fluids in motion have energy

because they have the ability to do work. Energy of motion is called kinetic

energy and is calculated by KE = ½mv2 for translational motion and 

KE = ½Iω2 for rotational motion. You also learned that, when work is done

on an object, the object’s kinetic energy changes by an amount equal to the

work done. This is the work-energy theorem.
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What happens when you toss a ball straight up into the air (with no

rotation)? You give the ball an initial speed and kinetic energy. But the

Earth’s gravity exerts a force on the ball, which slows it down. (Drag also

slows the ball, but we will neglect this force for now.) At some height h
above the point at which you released the ball, it stops moving upward and

begins moving downward. At this height the speed of the ball, and therefore

its kinetic energy, is zero.

You can write a relationship between h and the ball’s initial speed v1 using

the work-energy theorem:

W = ΔKE

For the upward motion, work is done in slowing the ball by the force of

gravity (or weight) mg, where m is the mass of the ball and g is the

acceleration of gravity. This force is directed downward, while the ball’s

displacement is upward. Since force and displacement are in opposite

directions, work is negative.

–mgh = KE2 – KE1

When the ball reaches height h, it stops moving, so KE2 = 0.

–mgh = 0 – KE1

mgh = KE1

Since KE1 = mv1
2, we can write the following equality: (What property of

mathematics do we use?)

mgh = mv1
21

2

1
2

Figure 5.9
The round trip of a tossed ball

Gravitational Potential Energy



From height h, the ball accelerates downward under the force of gravity.

This time gravity acts in the same direction as displacement, and work is

positive. Let v3 represent the speed of the ball when it returns to your hand.

You can write the following equation from the work-energy theorem:

mgh = KE3 – KE2

mgh = KE3 – 0

mgh = KE3 = mv3
2

Notice that mgh = KE1 and mgh = KE3. Therefore, KE1 = KE3. (What

property of mathematics allows you to make this conclusion?) In other

words, by the time the ball returns to your hand, it has recovered all its

original kinetic energy. The ball loses kinetic energy on the way up, until it

is zero, and then gains kinetic energy on the way down, until all the original

kinetic energy is back. What happens to the kinetic energy during this

process—where does it go?

As the ball rises, it gains the potential for doing work. This potential is

realized when the ball drops from height h and does work on your hand as

you catch the ball. The amount of work the ball can do because of its height

above your hand is called its gravitational potential energy. As the ball

rises, it loses kinetic energy and gains potential energy.

We use the symbol PE to represent potential energy. We have shown that an

object of mass m raised to a height h near the surface of the Earth can do an

amount of work mgh, where g is the acceleration of gravity. Therefore,

gravitational potential energy PEg is defined as follows:

The units of potential energy are the same as kinetic energy and work—

joules (J) in the SI system and ft-lb in the English system. 

In calculation of gravitational potential energy, the height h is measured from

a reference level that you select. The reference level is where you decide

h = 0 and PEg = 0. Example 5.6 demonstrates the importance of the

reference level.

Gravitational
potential energy = (mass)

gravitational
accelera( ttion

height

PE =g

)( )

mgh

1
2
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(a) A 1-kg picture hangs one meter above a floor. What is the

gravitational potential energy of the picture with respect to the floor?

(b) The floor is nine meters above the ground. What is the gravitational

potential energy of the picture with respect to the ground?

Solution:

(a) Measured “with respect to the floor” means the floor is the reference

level. Therefore, h is 1 m:

PEg = mgh = (1 kg)(9.80 m/s2)(1 m) = 9.8 kg•m2/s2 or  9.8 J

(b) Measured with respect to the ground, h is 10 m:

PEg = mgh = (1 kg)(9.80 m/s2)(10 m) = 98 kg•m2/s2 or  98 J

Notice that, when you specify a reference level, you are defining the

potential energy to be zero at that level. In Example 5.6(a), the height is

measured above the floor. The floor is the reference level, and if the picture

is moved to the floor PEg = mg(0) = 0. In Example 5.6(b), where does

PEg = 0?

EExxaammppllee  55..66  MMoorree  TThhaann  OOnnee  PPootteennttiiaall  EEnneerrggyy
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A submersible pump is in a 185-ft-deep well. It pumps water at a rate of

1 ft3 per second from the well into a tank’s inlet 15 ft above the ground.

What is the potential energy of 1 ft3 of water at the tank’s inlet, using the

pump’s location as the reference level? How much work is done by the

pump each second? The weight density of water is 62.4 lb/ft3.

Solution: Each second, the pump moves 1 ft3 of water. Calculate the

weight of this water:

Weight = ρwV = (62.4 lb/ft3)(1 ft3) = 62.4 lb

For calculation of the water’s potential energy using the

pump’s location as the reference level, the height h is 

185 ft + 15 ft = 200 ft. The weight of the water is mg.

PEg = mgh = weight •h = 62.4 lb •200 ft

PEg = 12,480 ft • lb

The potential energy of the water at height h is the same as the

work done by the pump in lifting the water a height h. 

Each second the pump does the following amount of work:

Wpump = PEg = 12,480 ft • lb

So far, you have seen how an object or fluid has potential energy because of

its position in the Earth’s gravitational field. Actually, it is more accurate to

say the system has potential energy. In these cases the system consists of the

object (or fluid) and the Earth. The object has potential energy because it is

in the gravitational field of the Earth. The Earth also has potential energy,

since it is in the gravitational field of the object. The Earth exerts a force on

the object, and the object exerts an equal but opposite force on the Earth.

The forces can do work on the system, accelerating the object toward the

Earth and the Earth toward the object. But we can usually ignore the

acceleration of the Earth since it is usually so small that it cannot be

measured. (Can you describe a situation where a force does have a

noticeable effect on the Earth?)

EExxaammppllee  55..77  PPootteennttiiaall  EEnneerrggyy  aanndd  WWoorrkk  ooff  aa  PPuummpp
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A system can also have potential energy because of an object’s position

when other types of forces act on it. As with gravity, these forces have

magnitudes that depend on the object’s position. For example, when you

stretch a rubber band it exerts a restoring force that increases in magnitude

as you increase the distance stretched. When you release the rubber band, it

returns to its original shape (assuming you did not stretch it too far).

A rubber band is elastic. Elasticity is an object’s or material’s tendency to

return to its original shape after being stretched. On the other hand, a piece

of chewing gum is inelastic. If you stretch the gum, it does not exert a

restoring force and it does not tend to return to its original shape.

Springs are made of elastic materials, usually metal. Like all elastic materials,

the elasticity of a spring is due to electric forces acting between atoms in the

metal. Figure 5.10 shows an elastic system composed of a spring with a mass

attached to one end and fixed at the other end. On the right end of the spring,

the mass and spring can move freely (without friction) left-to-right. The left

end of the spring is fixed in place and cannot move.

The equilibrium position of the spring is its unstretched position—where

the spring does not exert a restoring force. If you push or pull the mass and

displace the mass and spring from the equilibrium position, the spring exerts

a restoring force in the opposite direction. If you push the mass to the left,

the spring pushes to the right, toward the equilibrium position. Most springs

exert restoring forces that are directly proportional to the displacement. (This

is true as long as the displacement is less than the elastic limit of the spring.

If you extend or compress a spring farther than the elastic limit, the spring

will be permanently deformed, like the chewing gum.) Let F represent the

restoring force exerted by the spring, and let x represent the displacement.

F = kx

The proportionality constant k is called the spring constant. It has units of

force per unit distance—for example, N/cm or lb/in. A “stiff” spring has a

high value of k; a “soft” spring has a low value.

Figure 5.10
A spring-mass elastic system. At the equilibrium 
position, the spring exerts no force on the mass.

Elastic Potential Energy
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When a spring is compressed (or extended) it exerts a force through a

distance, and therefore does work. This work is stored in the spring as

elastic potential energy. You can calculate the work and energy as follows.

Suppose the spring from Figure 5.10 is compressed, by pushing the mass

from the equilibrium position to the left a distance x. Since it starts at

equilibrium, the initial force of the spring is Fi = 0. The final force is Ff = kx.

The average force exerted by the spring during the compression is

The work done by the spring is the product of the average force and the

displacement. Since the spring force and displacement are in opposite

directions, the work is negative.

If there is no friction in the system, the work done by the spring is the

opposite of the work done on the spring (by whoever pushed the mass to the

left). This work is stored in the spring as elastic potential energy PEelastic.

This is the amount of work the spring can do as a result of its change in

shape.

Suppose the mass and compressed spring in Figure 5.11 are released. The

spring exerts a net force on the mass to the right and accelerates the mass in

the direction of the net force. As the mass accelerates, the spring’s stored

potential energy is converted to kinetic energy. When the mass reaches the

equilibrium position (where x = 0) PE = 0 but the mass has maximum KE.

Its inertia causes it to continue moving to the right, extending the spring. As

the spring extends, kinetic energy is converted to potential energy. Now the

Elastic
potential energy = (spring constant)

spring
displa
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Figure 5.11
A compressed spring exerts a restoring force. 

The work done by the spring is stored as elastic potential energy.
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spring exerts a force to the left, and the mass will slow down, eventually

stop, and begin moving to the left. This process continues, with the mass

vibrating right to left and back again, alternately converting potential and

kinetic energies. This process is called simple harmonic motion.

A car’s coil spring is an application of elastic potential energy. When you

drive over a bump or depression and your car’s wheel suddenly moves

upward or downward, work is done on the coil spring. The spring stores an

amount of potential energy equal to this work. Stored energy is returned to

the wheel by lowering or raising it to its original position while keeping the

rest of the car nearly level. (Not all the stored energy is returned to the

wheel. Do you know what device in the car eliminates the simple harmonic

motion that compressing the coil spring would otherwise cause?)

The spring constant of a car’s front coil spring is 1800 N/cm. When a

front tire of the car rolls over a rock, the spring is compressed 15 cm

from its equilibrium position. How much potential energy is stored in

the spring at the point of maximum compression?

Solution: PEelastic = kx2

= (1800 N/cm)(15 cm)2

= 202,500 N•cm

The units in this result are not SI energy units. Convert cm 

to m:

The coil spring stores 2025 joules of potential energy.

PE = N cm
1 m

100 cm
= 2025 N m   or   2025elastic ( , )202 500 • •

⎛
⎝
⎜

⎞
⎠
⎟   J

1
2

1
2

EExxaammppllee  55..88  EEllaassttiicc  PPootteennttiiaall  EEnneerrggyy  iinn  aann  AAuuttoo  SSpprriinngg
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Several other applications of elastic potential energy are illustrated in

Figure 5.12. When a golfer strikes a golf ball, the club compresses one side

of the ball. The work done by the club is stored as elastic potential energy in

the ball. The elastic potential energy is converted to kinetic energy as the

golfer keeps the club in contact with the ball during the follow-through of

the swing. The ball accelerates off the club as it returns to its original shape.

When an archer pulls the string on a bow, she does work, which is stored in

the bow as elastic potential energy. This energy is converted to kinetic

energy when the archer releases the string and it accelerates the arrow.

A pole-vaulter begins a vault by sprinting forward to gain kinetic energy.

Some of this energy is converted to work when she plants one end of the

pole in the box and bends the pole. This work is stored in the pole as elastic

potential energy. The potential energy is converted back to work and kinetic

energy as the pole straightens and lifts the vaulter upward. The work of the

pole and the vaulter’s kinetic energy are converted to gravitational potential

energy as she clears the crossbar. Her gravitational potential energy is

converted back again to kinetic energy as she falls into the pit.

The examples above demonstrate how potential energy can be converted to

kinetic energy, and vice versa. There are also other forms of energy that take

part in energy conversion. Internal energy, for example, must be included

when drag or friction is important. A soccer ball rolling across a grass field

eventually stops due to friction. As it slows down, its potential energy is

constant but it loses kinetic energy. Total energy is not lost, it is transformed

Conservation of Energy

Figure 5.12
Applications of elastic potential energy
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from one type to another. The ball’s initial kinetic energy is transformed to

thermal energy in the grass and the ball. (What happens to the temperature of

the grass and ball?)

Scientists have studied various forms of energy, and its transformation from

one form to another, for over 150 years. Their conclusion is one of the most

important generalizations in science: the law of conservation of energy.

In an isolated system, energy is conserved—it cannot be created or
destroyed. Energy can change form, but the total amount of energy in the
system does not change.

We can demonstrate the law of conservation of energy using the example

from the beginning of the section. Suppose the mass of the ball is 1 kg and

you toss it straight upward with an initial speed of 10 m/s. We define

potential energy to be zero at the point of release of the ball. So the total

energy of the ball is the following sum:

Total energy =  PEg + KE  =  0 + mv2

=  (1 kg)(10 m/s)2

=  50 J

If we neglect energy transfer to the air through drag forces, the total energy

of the ball does not change; it remains 50 J throughout its rise. Just as the

ball is released, all its energy is kinetic. Energy is converted from kinetic to

potential as the ball rises, but the total energy is constant. Table 5.1 lists the

potential, kinetic, and total energies at six heights. Will the ball ever reach a

height of 5.2 m? Why?

Table 5.1 Potential, kinetic, and total energies of a 
1-kg ball tossed upward at 10 m/s

Height PE = mgh 1
2

2 KE = mv PE + KE

5.1 m v = 0 m/s 50 J 0 J 50 J

4.0 39.2 10.8 50

3.0 29.4 20.6 50

2.0 19.6 30.4 50

1.0

0 v = 10 m/s

9.8

0

40.2

50

50

50

1
2

1
2
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A cliff diver dives from a height of 50 feet above the water surface. How

far is he from the water when his speed is 40 ft/s? Neglect air drag.

Solution: Let PE1 and KE1 represent the diver’s potential and kinetic

energies before he jumps. Let PE2 and KE2 represent the

energies at the point at which his speed is 40 ft/s.

Since total energy is conserved and the only forms of energy

are potential and kinetic,

Total energy = PE1 + KE1 = PE2 + KE2

mgh1 + mv1
2 = mgh2 + mv2

2

m(32.2 ft/s2)(50 ft) + m(0)2 = m(32.2 ft/s2)(h2) + m(40 ft/s)2

Each term of this equation contains m, so divide both sides by

m, and it cancels. The only unknown is h2. It has units of feet.

(32.2)(50) + 0 = 32.2 h2 + (1600)

1610 = 32.2 h2 + 800

h2 = = 25.2   or   25.2 ft

The cliff diver is 25.2 feet above the water when his speed reaches 40 ft/s.

1610 800

32.2

−

1
2

1
2

1
2

1
2

1
2

EExxaammppllee  55..99  TToottaall  EEnneerrggyy  ooff  aa  CClliiffff  DDiivveerr
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Do you think a fluid will have higher, lower, or the same pressure when it is

moving compared to the pressure when the fluid is standing still? Compare

your answer to the results of two simple experiments, illustrated in

Figure 5.13. First, hold a piece of notebook paper just under your lower lip.

Blow hard across the top surface. The paper moves upward. In the second

experiment, turn on a water faucet until you establish a slow, steady stream

of water. Hold a spoon from the end of the handle, with the back of the

spoon just touching the stream. The spoon moves toward the stream.

The notebook paper and the spoon move because a net force is acting on

them. The force is due to atmospheric pressure acting over a surface area.

The pressure below the notebook paper is greater than the pressure in the

moving air. The pressure to the right of the spoon is greater than the pressure

in the moving water. These experiments demonstrate a relationship between

the velocity and pressure of a moving fluid. The relationship was first

recognized by a Swiss scientist named Daniel Bernoulli in the mid-1700s.

Bernoulli’s principle states:

As the velocity of a fluid increases, the pressure in the fluid decreases.

You may have seen how fluid velocity can increase. For example, water

flowing in a stream speeds up when it passes through a narrow part of the

stream. You could have predicted this increase in Section 3.2. You learned

that the mass flow rate of a fluid is the product of density ρ, cross-

sectional area A of the flow, and fluid speed v: = ρAv. If water flows

continuously through a stream or pipe, mass flow rate into a narrow section

must equal mass flow rate out. (There is no place in a pipe for fluid to be

stored, removed, or inserted.) Therefore, must be constant. If the density

stays the same but A decreases, v must increase. This is illustrated in

Figure 5.14 for a pipe with a gradual reduction in cross section.

m•

m•

m•

Figure 5.13
Two demonstrations of Bernoulli’s principle

Bernoulli’s Principle and Bernoulli’s Equation
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Since the speed in the narrow section increases, so does kinetic energy. In

Figure 5.14, v2 > v1. This means the fluid mass is accelerated from left to

right. A net force is acting from left to right causing the acceleration and

doing work on the fluid. In fluid systems, a net force per unit area means

there is a pressure difference. Therefore, P1 > P2. As the velocity of the fluid
increases, the pressure in the fluid decreases.

Bernoulli also applied energy conservation to fluid flow, as shown in

Figure 5.15. Total energy is conserved in a fluid flowing between two points,

through a curved pipe of nonuniform cross section. For simplicity, assume

there is no viscosity in the fluid, so no energy is “lost” due to internal

friction, drag, or turbulence (“lost” means converted to internal energy).

P1 + ρgh1 + ρv1
2 =  P2 + ρgh2 + ρv2

2

In solving fluid-flow problems, it is usually simpler to use density instead of

mass. The density of a fluid is constant in many processes. When we use

density instead of mass, energy becomes energy per unit volume. For

example, when you divide KE and gravitational PE by volume V, you get:

=
m
V

ρ[ ]
g

g

g

PE =

PE
=

PE  per unit
=

volume

mgh

m gh
V V

ghρ

21
2

21
2

21
2

KE =

KE
=

KE per unit
=volume

mv

m v
V V

vρ

Figure 5.15
Bernoulli’s equation for two points in a fluid

1
2

1
2

Figure 5.14
The velocity of water increases in

the narrower section of a pipe. 
The pressure decreases.
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The fluid pressure changes from point 1 to point 2. Since there are no other

sources of work or energy, the pressure change must be caused by work done

by the fluid. Remember from Section 2.2 that work done by a given volume

of fluid is given by the equation W = –ΔP(V). Therefore, the work per unit

volume done by the fluid is W/V = –ΔP, or P1 – P2. Energy is conserved, so

all this work goes into changing kinetic and potential energies.

P1 – P2 =  ( ρv2
2 – ρv1

2) + (ρgh2 – ρgh1)

If you rearrange this equation to get all the same subscripted variables on the

same side, the result is Bernoulli’s equation:

P1 + ρgh1 + ρv1
2 =  P2 + ρgh2 + ρv2

2

The quantity P + ρgh + ρv2 represents total energy per unit volume.

Bernoulli’s equation states that this quantity is constant everywhere in the

fluid.

Notice that, if fluid viscosity is not negligible, the quantity P + ρgh + ρv2

is not constant—it decreases in the direction of the flow.

A constriction is built into a 3-cm-radius pipe to measure the flow rate of

water. The pipe has a 2-cm radius at the narrow part. When the water

pressure in the narrow part of the pipe is 110.6 kPa, the pressure in the

wide part is 115.4 kPa. What is the mass flow rate of water through the

pipe? The density of water is 1000 kg/m3.

Solution: The mass flow rate is = ρAv and is constant. Therefore

ρA1v1 = ρA2v2. Solve this equation for v1. The pipe is circular,

so A = πr2.

Substitute this result into Bernoulli’s equation and solve for v2.

The height of the fluid does not change, so h1 = h2, and the PEg

terms cancel.

v A v
A

A
A

v v v1
2 2

1

2

1
2 2 2

0 03

0 02
2 25= = =

 m)

 m)
=

2

2
 

ρ
ρ

π
π

( .

( .
.

m•

m•

EExxaammppllee  55..1100  FFllooww  TThhrroouugghh  aa  CCoonnssttrriiccttiioonn
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Now calculate the mass flow rate:

= ρA2v2 = (1000 kg/m3)π(0.03 m)2(1.54 m/s)

= 4.35 kg/s

The mass flow rate of water through the pipe is 4.35 kilograms per second.

The lifting force of a wing on an airplane is another application of Bernoulli’s

principle. Streamlines in the flow of air past a wing are shown in Figure 5.16.

The wing divides air into two parts: One part flows over the top surface of the

wing and the other flows along the bottom surface. Air flowing over the top

of the wing travels farther than air flowing along the bottom, but in the same

amount of time. This means the speed of air above the wing is greater than

the speed below the wing. The difference in speed leads to a lower pressure

over the top of the wing. The average pressure difference times the area of the

wing is the lifting force produced by the wing.

At higher speeds, the pressure difference and the lift are higher. But, for any

wing design, at some speed and angle of attack the air flow becomes

turbulent. The lifting force of a wing is lowered by turbulent air flow.

Figure 5.16
Streamlines show air flow around a wing. Air speed is higher 

where the streamlines are closer together.
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• Potential energy is energy that something has because of its position.

• In a gravitational field, PEg = mgh.

• Elastic potential energy is energy stored in a spring or other material

that exerts a restoring force when it is stretched or compressed.

PEelastic = kx2

• Work done on a system can be stored as potential energy.

• The law of conservation of energy states that in an isolated system

energy can change form, but the total energy does not change.

• Bernoulli’s principle states that as the velocity of a fluid increases, the

pressure in the fluid decreases.

• Bernoulli’s equation states that, for a nonviscous, laminar fluid flow

where the density does not change, P + ρgh + ρv2 is constant. This is

a statement of conservation of energy for the fluid.

1. Is energy the same as force? How are they related?

2. If you lift a 50-lb barbell 6 ft off the floor, how much work do you do? By

how much do you change the barbell’s potential energy? If you drop the

barbell from 6 ft, what is its kinetic energy just before it hits the floor?

3. A 90-kg box is stored on a warehouse shelf 8.2 meters above the floor.

(a) What is the box’s gravitational potential energy relative to the floor?

(b) What is the box’s gravitational potential energy relative to a forklift

3.5 m above the floor?

Exercises

1
2

1
2

Summary
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4. Shareka weighs 490 N. She rides an escalator in a mall to a level 6.7 m

below her starting location. What is Shareka’s change in gravitational

potential energy?

5. (a) How much potential energy does a 55.2-kg rock-climber gain when

she climbs a vertical distance of 35 m?

(b) Does your answer to (a) change if the climber follows a zig-zag path

instead of a straight-line path up the rock? Explain.

6. A 0.60-kg basketball drops from the top of a building, 8 meters above the

ground. Marc is located 5 meters above the ground, and Maria is on the

ground. They choose their own locations as the reference levels for the

ball’s gravitational potential energy.

Calculate the potential energy and kinetic energy of the ball, as seen by

Marc and Maria at three locations: (1) on the top of the building, (2) at

Marc’s location, and (3) at Maria’s location. Put your answers in a table

like the one below.

7. In Exercise 6, will Marc and Maria always agree on

(a) The ball’s potential energy?

(b) The change in the ball’s potential energy [from (1) to (2), (1) to (3),

and (2) to (3)]?

(c) The ball’s kinetic energy?

Marc Maria

PE1 ? ?

PE2 ? ?

PE3 ? ?

KE1 ? ?

KE2 ? ?

KE3 ? ?
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8. A spring compresses 1.25 in. from its equilibrium position when a force

of 8.4 lb is applied.

(a) Calculate the spring constant of this spring.

(b) How much work can the spring do if it is extended 0.85 in. from

equilibrium?

9. A spring with a spring constant of 1800 N/m is attached to a wall. 

A 1.5-kg mass is attached to the free end of the spring. The mass can

move right and left without friction.

(a) The mass is pulled to the right 0.75 cm from the equilibrium position.

How much potential energy is stored in the spring relative to the

equilibrium position?

(b) The mass is released. When it reaches the equilibrium position, what

is the kinetic energy of the mass? What is its speed?

(c) How far to the left will the mass continue past the equilibrium

position?

10. A tennis ball is dropped from a height of 1.6 m. The ball strikes the floor

and rebounds to a height of 1.2 m. Has the collision with the floor

changed the energy of the ball? Explain your answer.

11. Some satellites travel in

elliptical orbits, like that

shown here. As the satellite

moves in the orbit, its PE and

KE change but the total energy

remains constant. At which

point in the orbit, A, B, C, or

D, does the satellite have the

greatest PE? Greatest KE?
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12. A hang-glider and his gear have a combined weight of 255 lb. With a

running start, he leaves the edge of a cliff with an initial air speed of

14.6 ft/s.

(a) What is the hang-glider’s initial kinetic energy?

(b) To gain air speed, the hang-glider immediately descends 250 ft. If you

neglect air drag, what is the hang-glider’s kinetic energy after the

descent?

(c) After descending 250 ft, the hang-glider’s actual air speed is 105 ft/s.

How much work is done on the hang-glider by drag forces during the

descent?

13. An electric utility company uses electrical energy generated during the

night (the low-demand hours) to pump water into a reservoir. During the

day (the high-demand hours), the water is drained. As it runs out of the

reservoir, the water turns hydroelectric turbines and generates additional

peak-demand electricity for the company. The pump and piping system

are 63% efficient. This means 63% of the energy supplied to the pump

goes into increasing the water’s gravitational potential energy.

If the pump operates with a pressure difference of 250 psi and it pumps

366,000 ft3 of water, how much work is done by the pump? By how many

foot-pounds is the potential energy of the water increased? How much

energy is supplied to the pump?

14. A fire hose straight-stream nozzle increases the speed of water leaving the

hose. The nozzle is 4.76 cm in diameter where it connects to the hose and

2.54 cm in diameter at the open end. Water enters the nozzle at a speed of

4 m/s and a pressure of 2.0 × 105 Pa.

(a) What is the speed of the water as it leaves the nozzle?

(b) What is the pressure of the water as it leaves the nozzle?

15. Show that Bernoulli’s equation includes the law of pressure change in a

stationary fluid: In Figure 5.15, let v1 = v2 = 0. When the fluid is not

moving, which should be greater, P1 or P2? Use Bernoulli’s equation to

complete the following for a stationary fluid.

P1 = ?

Explain why this equation makes sense. (Remember Pascal’s law from

Section 1.2.)


