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To find out more about

energy in mechanical and fluid

systems, follow the links at

www.learningincontext.com.

Objectives
• Explain the relationship between kinetic energy and motion.

• Calculate the kinetic energy of an object when it is in translational

motion and when it is in rotational motion.

• Explain the similarities between the equations for translational and

rotational kinetic energies.

• Explain the relationship between the work done on an object or fluid

and the change in kinetic energy.

• Use the work-energy theorem to solve problems in mechanical and fluid

systems.

An object or a fluid in motion can do work. A moving hammer can do work

on a nail. Hot exhaust gas leaving a jet engine can do work on an airplane.

Therefore, the moving hammer and exhaust gas have energy. Energy that is

due to mass in motion is called kinetic energy. Mathematically, kinetic

energy KE is the product of one-half the mass m of the object and the square

of its speed v.

Kinetic Energy
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The unit for kinetic energy is the same as the unit for work. In SI, kinetic

energy is measured in joules. For example, a 2-kg object moving at 1 m/s

has a kinetic energy of (2 kg)(1 m/s)2 = 1 kg•m2/s2 or 1 N•m or 1 J. In

English units, energy is measured in foot-pounds.

Kinetic energy increases linearly with mass. Suppose a 1-kg hammer and a

2-kg hammer are moving at the same speed. The 2-kg hammer has twice the

kinetic energy of the 1-kg hammer, and can do twice the work.

Kinetic energy increases with the square of the speed. Suppose a 1-kg

hammer is moving twice as fast as another 1-kg hammer. The faster hammer

has four times the kinetic energy of the slower hammer, and can do four

times the work.

Figure 5.2
A hammer moving twice as fast as an 

identical hammer has four times the kinetic energy.

Figure 5.1
A 2-kg hammer has twice the kinetic energy of 

a 1-kg hammer moving at the same speed.
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After a serve, a 0.27-kg volleyball is moving at 22 m/s. What is the

kinetic energy of the volleyball?

Solution: KE = mv2

= (0.27 kg)(22 m/s)2

= 65.3 kg•m2/s2 or     65.3 J

The kinetic energy of the volleyball is 65.3 joules.

Just before it strikes the ground, an 8.8-lb shot in a shot-put competition is

moving at 38 ft/s. What is the kinetic energy of the shot?

Solution: First convert the weight of the shot (pounds) to mass (slugs).

You can use the relationship that one slug weighs 32.2 pounds.

Or, you can use Newton’s second law, with the force of gravity

equal to the weight and a = g:

The kinetic energy of the shot is 197 foot-pounds.

A body in circular motion has kinetic energy since it is moving and can do

work. For example, a satellite in circular orbit around the Earth has kinetic

energy. Let ω represent the satellite’s angular speed (in radians per second).

Let r represent the distance from the satellite to the center of rotation, which

is the center of the Earth.

Kinetic Energy in Rotational Systems
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The linear speed v of the satellite is the product of r and ω. If r is measured

in meters and ω is measured in rad/s, what are the units of v?

v = rω

The satellite’s kinetic energy can be written as follows:

KE = mv2 = mr2ω2

The product mr2 is called the moment of inertia of the satellite. We use the

symbol I to represent moment of inertia. The kinetic energy equation for a

body in rotation can be written as follows.

This is the same equation as that for the kinetic energy of a body in

translation, but moment of inertia replaces mass and angular speed replaces

linear speed.

The moment of inertia of a body in rotational motion is usually not easy to

calculate. For the satellite, the equation I = mr2 was based on an important

assumption about the mass and its location relative to the axis of rotation.

When we said, “let r represent the distance from the satellite to the center of

rotation,” we did not say what part of the satellite we would measure r from.

Instead, we assumed that all the satellite mass was concentrated at a single

point, and we measured from that point. This point is called the satellite’s
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Figure 5.3
A satellite in circular orbit 

is a rotational system.
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center of mass. Using the center of mass, you can treat the satellite as a

particle—as if it has mass but no size. The motion of the center of mass

represents the motion of the entire satellite for rotation around the Earth.

A satellite can also spin, or rotate about an axis through its center of mass.

The kinetic energy of this motion is not the same as the kinetic energy of the

orbital motion. The equation KE = Iω2 still holds, but ω is now the angular

speed of rotation about the internal axis and I is the moment of inertia about

this axis. Calculation of this moment of inertia is more complicated than

before, because of the way the satellite’s mass is distributed around the axis

of rotation.

To see how to calculate the moment of inertia of this type of object, look at

the compact disc shown in Figure 5.5. Think of all the particles that make up

the CD. They have different distances from the axis of rotation, and they

may have different masses. Two of these particles are shown in the figure—

one on the outside rim of the CD and one on the inside rim. The particles

have masses m1 and m2, and they are located distances r1 and r2 from the

axis of rotation.

Figure 5.5
The moment of inertia of a CD 

is the sum of the moments of all 
the particles that make up the CD.

Figure 5.4
A spinning satellite has

rotational kinetic energy, 
not the same as its 

orbital kinetic energy.
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The moment of inertia of the two particles is the sum m1r1
2 + m2r2

2. But the

CD contains many more than two particles, and the moment of inertia of the

entire CD is the sum of all the particles’ moments:

I = m1r1
2 + m2r2

2 + m3r3
2 + …

The symbol “+ …” means to continue the sum for all particles. It is possible

to find this sum using the tools from a branch of mathematics called

calculus. For an object in the shape of the CD (an annular cylinder), the

result is 

I = m(r1
2 + r2

2)

where m is the total mass of the CD (m = m1 + m2 + m3 + …).

Figure 5.6 lists the formulas for moments of inertia for the point particle,

annular cylinder, and five other shapes. Each formula contains the mass of

the object and a distance (radius or length), but the formulas are different.

For each shape, the axis of rotation also is specified. Notice that (d) and (h)

are the same shape but the axes are different. The moment of inertia changes

when the axis changes.

Moment of inertia in rotational kinetic energy is analogous to mass in

translational kinetic energy, but they are not the same. You can demonstrate

the difference with a simple activity. You will need two metersticks, four

100-gram weights, and some masking tape. Tape two weights to one

meterstick, at the 40- and 60-cm marks. Tape the other two weights to the

other meterstick, at the 10- and 90-cm marks. The total masses of the

metersticks are the same, but the moments of inertia are different.

Figure 5.6
Moment of inertia formulas for different-shaped objects. 

In each case, m is the mass of the object.
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Hold each meterstick at the 50-cm mark. The center of mass is also at the

50-cm mark. Mass is a property that describes an object’s resistance to

change in translational motion. Hold each meterstick horizontally, and move

it up and down. To they have the same mass?

Moment of inertia is a property that describes an object’s resistance to

change in rotational motion. Rotate each meterstick about an axis through

the center of mass and perpendicular to the length, as shown in Figure 5.7.

Which one is harder to rotate? This one has a greater moment of inertia.

A flywheel is being tested as a possible energy-storage device for

automobiles. The flywheel is in the shape of a solid cylinder with a radius

of 0.25 m. The mass of the flywheel is 68 kg, and it spins at an angular

speed of 6200 rpm. What is the kinetic energy of the flywheel?

Solution: First find the moment of inertia. The formula for a solid

cylinder is given in Figure 5.6(d):

Use this value in the equation for rotational kinetic energy.

Convert angular speed to radians per second:

The kinetic energy of the flywheel is 4.5 × 105 joules.
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Figure 5.7
The masses are the same, but I2 > I1. You can tell the difference by 

rotating each meterstick about an axis through the center of mass.
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A 7.2-kg bowling ball has a diameter of 25 cm. When the ball is rolled

down an alley, the center of the ball moves at a horizontal speed of

4.2 m/s. The ball rotates at a rate of 33 rad/s. What is the kinetic energy of

the bowling ball when it strikes the first pin?

Solution: The bowling ball has translational and rotational motion. The

total kinetic energy is the sum of the two kinetic energies:

First calculate KEtranslational:

Now find the moment of inertia of the bowling ball. The ball is

a solid sphere. The formula is given in Figure 5.6(f):

Calculate KErotational:

Find the sum:

The kinetic energy of the bowling ball is 88 joules.
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A hockey puck slides across the ice at an initial speed vi and with an initial

kinetic energy KEi. A skater strikes the puck and exerts a force in the

direction of motion. This force accelerates the puck. The puck’s speed

increases to a value vf. Since vf > vi, the final kinetic energy KEf is greater

than KEi. Where did the extra kinetic energy come from?

The skater applies a force to the puck to accelerate it down the ice. This

force is applied over a distance Δx. Therefore, the skater does work on the

puck. This work is responsible for the puck’s increase in kinetic energy. In

general, when work is done on an object, its kinetic energy changes, and the

work done equals the change in kinetic energy.

W = KEf – KEi

Or, using the delta symbol:

W = ΔKE

This relationship is called the work-energy theorem. The theorem was

established in the nineteenth century by the English physicist James Prescott

Joule. The SI unit of energy and work is named in his honor.

The work-energy theorem establishes an alternative definition of work: a

measure of the energy that is transmitted by a force, such as a contact,

gravitational, electrical, or magnetic force. In the example above, the work

done by the hockey player can be measured by the energy transmitted to the

puck (ΔKE).

The work-energy theorem also applies to fluids. Remember, a pressure (or

force per unit area) can do work on a fluid (W = PΔV or –VΔP). Work done

on a fluid changes the fluid’s kinetic energy. You will use the relationship

between work and energy for fluids in the next section.

Figure 5.8
Work done on a hockey puck increases its kinetic energy.

The Work-Energy Theorem
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A 2150-kg truck accelerates from 25 km/h to 40 km/h. What work is done

by the engine? Neglect friction and drag.

Solution: Convert the initial and final speeds to meters per second:

Calculate the truck’s initial and final kinetic energies:

Now use the work-energy theorem:

The engines does 8.02 × 104 joules of work.

• Energy is a property that enables something to do work.

• Kinetic energy is energy that an object has due to its motion.

• An object has kinetic energy if it is in translational motion 

(KE = mv2) or if it is in rotational motion (KE = Iω2).

• The moment of inertia I is a property that describes an object’s

resistance to change in rotational motion.

• When work is done on an object, its kinetic energy changes by an

amount equal to the work done.
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1. Is kinetic energy a scalar or a vector quantity? Can the kinetic energy of

an object ever be negative? Explain your answers.

2. A bicycle racer and her bike have a combined weight of 128 lb. She

pedals the bike 0.35 mile in 1.0 minute at a constant speed. What is her

kinetic energy?

3. If you double the speed of an object, by how much do you increase its

kinetic energy?

4. Car A is accelerated from 0 to 50 km/h. Car B, which has half the mass

of car A, is accelerated from 0 to 100 km/h. Which car’s engine does

more work?

5. A 2500-kg truck slows from 100 km/h to 72 km/h when the driver

applies the brakes. What are the initial and final kinetic energies? How

much work is done by the truck’s brakes?

6. If the brakes of the truck in Exercise 5 did half as much work, what

would be the truck’s final speed?

7. If the brakes of the truck in Exercise 5 did twice as much work, what

would be the truck’s final speed?

8. What quantity in a rotational system is analogous to mass in a

translational system? What are the SI units of this quantity?

9. When calculating rotational kinetic energy, what units for angular speed

must be used?

10. A 75-gram hailstone has a terminal speed of 180 m/s. How much work

can the hailstone do when it hits a shingle on the roof of a house?

11. If a large airplane has to make an emergency landing, it may have to

“dump” (or drain) fuel in the air to reduce its weight. An airliner dumps

20,000 pounds of fuel before landing at a speed of 120 mph. By how

much does the airliner reduce its kinetic energy for touchdown by

dumping the fuel?

12. A flywheel between an air compressor and its drive motor dampens

torque variations. The moment of inertia of the flywheel is 8640 kg•m2.

What is the kinetic energy of the flywheel when it rotates at 441 rpm?

Exercises
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13. The flywheel in Exercise 12 slows from 441 rpm to 440 rpm in

¼ revolution. Calculate the work done on the flywheel during the

¼ revolution.

14. An underground water pipeline has a diameter of 0.92 m. The pipeline is

85 km long. If the pipe is completely full of water and the water flows at

a speed of 3.1 m/s, what is the kinetic energy of the water? The density

of water is 1000 kg/m3.

15. You are designing the wheels for a solar-powered-car competition. You

can use a solid, annular, or hoop design, approximated by the

illustrations below. The mass of each wheel is 0.75 kg.

Suppose the car starts from rest and 1 joule of work is transmitted to

each wheel, resulting in rotational motion of the wheel. Calculate the

angular speed, in revolutions per minute, for each wheel. Which design

would you use? Explain your choice.

16. A wind-powered electrical generator has a propeller diameter of 8.5 m.

In a 24-hour period, the average speed of air flowing through the

generator is 6.7 m/s. You can model this air as that contained in a tube of

length l.

(a) Calculate the length of the tube and the volume of air that flows

through the generator in the 24-hour period.

(b) The air has an average density of 1.15 kg/m3. How much kinetic

energy is contained in the wind?

(c) How much energy does the generator extract from the wind during

this 24-hour period if it is 30% efficient?
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17. A 1000-kg telecommunication satellite is placed in a geostationary orbit.

In this orbit, the satellite completes exactly one revolution of the Earth in

24 hours. The radius of a geostationary orbit is 42,160 km.

(a) Calculate the moment of inertia of the satellite in the geostationary

orbit. Calculate the angular speed of the satellite, in radians per

second. What is the satellite’s kinetic energy in geostationary orbit?

(b) The satellite is launched from the Guiana Space Center, near the

Earth’s equator. Before launch, the satellite’s angular speed is

approximately the same as that calculated in (a). Explain why this is

true.

(c) The radius of the Earth is 6370 km. What is the satellite’s moment of

inertia just before it is launched into space? What is the satellite’s

kinetic energy just before it is launched into space?

(d) The launch vehicle does work to change the satellite’s kinetic energy

and to lift the satellite (and its own mass) in the Earth’s gravitational

field. How much work is done to change the satellite’s kinetic

energy?


